Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 4019-4028, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38366980

RESUMO

Humic acid (HA) ubiquitously existing in aquatic environments has been reported to significantly impact permanganate (KMnO4) decontamination processes. However, the underlying mechanism of the KMnO4/HA system remained elusive. In this study, an enhancing effect of HA on the KMnO4 oxidation of diclofenac (DCF) was observed over a wide solution pH range of 5-9. Surprisingly, the mechanism of HA-induced enhancement varied with solution pH. Quenching and chemical probing experiments revealed that manganese intermediates (Mn(III)-HA and MnO2) were responsible for the enhancement under acidic conditions but not under neutral and alkaline conditions. By combining KMnO4 decomposition, galvanic oxidation process experiments, electrochemical tests, and FTIR and XPS analysis, it was interestingly found that HA could effectively mediate the electron transfer from DCF to KMnO4 in neutral and alkaline solutions, which was reported for the first time. The formation of an organic-catalyst complex (i.e., HA-DCF) with lower reduction potential than the parent DCF was proposed to be responsible for the accelerated electron transfer from DCF to KMnO4. This electron transfer likely occurred within the complex molecule formed through the interaction between HA-DCF and KMnO4 (i.e., HA-DCF-KMnO4). These results will help us gain a more comprehensive understanding of the role of HA in the KMnO4 oxidation processes.


Assuntos
Óxidos , Poluentes Químicos da Água , Óxidos/química , Compostos de Manganês/química , Substâncias Húmicas/análise , Diclofenaco/química , Elétrons , Oxirredução , Poluentes Químicos da Água/análise
2.
J Org Chem ; 89(4): 2448-2458, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275288

RESUMO

An operationally simple and green protocol using a NiSO4·6H2O/cationic 2,2'-bipyridyl ligand system as a water-soluble catalyst for the coupling of arylboronic acids with (2-haloallyl)phosphonates and (2-haloallyl)sulfones in water under air was developed. The reaction was performed at 120 °C with arylboronic acids (2 mmol) and (2-haloallyl)phosphonates or sulfones (1 mmol) in the presence of 5 mol % of the Ni catalytic system in a basic aqueous solution for 1 h, giving the corresponding 2-aryl allyl phosphonates or sulfones in good to excellent yields. This reaction features the use of an abundant transition metal as a catalyst in water and exhibits high functional group tolerance, rendering it an eco-friendly procedure.

3.
J Hazard Mater ; 463: 132961, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951171

RESUMO

Amine-based pharmaceuticals are a significant class of N-nitrosodimethylamine (NDMA) precursors. This study investigated the use of unactivated peroxymonosulfate (PMS) to control amine-based pharmaceuticals and their NDMA formation potential. Kinetic analysis and product identification revealed that sumatriptan and doxylamine primarily underwent reactions at their tertiary amine group, while ranitidine and nizatidine had both tertiary amine and thioether group as reaction sites. The NDMA formation from sumatriptan and doxylamine during post-chloramination was significantly reduced with the abatement of the parent contaminants, while the formation of NDMA remained high even if full abatement of ranitidine and nizatidine was achieved. Product formation kinetics and reference standard tests revealed the great contribution of transformation products to NDMA formation. Ranitidine could be oxidized to sulfoxide-type product ranitidine-SO and N-oxide type product ranitidine-NO. Ranitidine-SO exhibited a high NDMA yield comparable to that of ranitidine (>90%), while ranitidine-NO showed a low NDMA yield (2%). With further oxidation of ranitidine-SO at the tertiary amine group, NDMA formation was reduced by more than 90%. The underlying mechanism for the importance of the tertiary amine group in NDMA formation was demonstrated by quantum chemical calculation. These findings underscore the potential of PMS pre-oxidation on NDMA control.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Aminas , Ranitidina , Cloraminas , Dimetilnitrosamina/análise , Sumatriptana/análise , Cinética , Nizatidina/análise , Doxilamina/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
4.
Chemistry ; 29(47): e202301224, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37328428

RESUMO

Lysocin E (1 a) and WAP-8294A2 (2 a) are peptidic natural products with 37- and 40-membered macrocycles, respectively. Compounds 1 a and 2 a have potent antibacterial activities against Gram-positive bacteria and share a unique mode of action. The electron-rich indole ring of d-Trp-10 of 1 a and 2 a interacts with the electron-deficient benzoquinone ring of menaquinone, which is a co-enzyme in the bacterial respiratory chain. Formation of the electron-donor-acceptor complex causes membrane disruption, leading to cell death. Despite the promising activities of 1 a and 2 a, the susceptibility of Trp-10 to oxidative degradation potentially deters the development of these compounds as antibacterial drugs. To address this issue, we replaced the indole ring with more oxidation-resistant aromatics having a similar shape and electron-rich character. Specifically, analogues with benzofuran (1 b/2 b), benzothiophene (1 c/2 c), and 1-naphthalene (1 d/2 d) rings were designed, and chemically prepared by full solid-phase total syntheses. Antibacterial assays of the six analogues revealed similar activities of 1 d/2 d and markedly reduced activities of 1 b/2 b and 1 c/2 c compared with 1 a/2 a. Equipotent 1 d and 2 d both showed high resistance to oxidation by peroxyl radicals. Hence, the present study demonstrates a new molecular editing strategy for conferring oxidation stability on natural products with pharmacologically useful functions.


Assuntos
Antibacterianos , Produtos Biológicos , Antibacterianos/química , Vitamina K 2 , Testes de Sensibilidade Microbiana
5.
Biomolecules ; 13(6)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37371591

RESUMO

In this nano era, nanomaterials and nanostructures are popular in developing novel functional materials. However, the combinations of materials at micro and macro scales can open new routes for developing novel trans-scale products with improved or even new functional performances. In this work, a brand-new hybrid, containing both nanofibers and microparticles, was fabricated using a sequential electrohydrodynamic atomization (EHDA) process. Firstly, the microparticles loaded with drug (berberine hydrochloride, BH) molecules in the cellulose acetate (CA) were fabricated using a solution electrospraying process. Later, these microparticles were suspended into a co-dissolved solution that contained BH and a hydrophilic polymer (polypyrrolidone, PVP) and were co-electrospun into the nanofiber/microparticle hybrids. The EHDA processes were recorded, and the resultant trans-scale products showed a typical hybrid topography, with microparticles distributed all over the nanofibers, which was demonstrated by SEM assessments. FTIR and XRD demonstrated that the components within the hybrids were presented in an amorphous state and had fine compatibility with each other. In vitro dissolution tests verified that the hybrids were able to provide the designed dual-step drug release profiles, a combination of the fast release step of BH from the hydrophilic PVP nanofibers through an erosion mechanism and the sustained release step of BH from the insoluble CA microparticles via a typical Fickian diffusion mechanism. The present protocols pave a new way for developing trans-scale functional materials.


Assuntos
Berberina , Nanofibras , Preparações de Ação Retardada/química , Nanofibras/química , Polímeros/química
6.
Chemistry ; 29(43): e202301225, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198137

RESUMO

Tryptophan (Trp) plays a unique role in peptides and proteins as its indole ring possesses an electron-rich character and an N1-H hydrogen-bond donor. Because of its non-rotationally symmetric structure, synthetic alterations of the orientation of the indole ring would modulate the intrinsic structures and functions of peptides and proteins. Here we developed synthetic routes to the five Trp isomers in which the C3-substitution of the indole ring was changed to the C2/4/5/6/7-substitutions, and applied the five monomers to Fmoc-based solid-phase peptide synthesis. Specifically, the five monomers were prepared via Negishi cross-coupling reactions of C2/4/5/6/7-iodoindoles. To demonstrate the applicability of the monomers to the solid-phase synthesis, the five Trp isomers of macrocyclic antibiotic lysocin E were selected as target molecules and synthesized through peptide elongation, on-resin macrocyclization, and global deprotection. The Trp isomers displayed markedly weaker antibacterial activity than the parent natural product, revealing the biological importance of the precise three-dimensional shape of the original Trp residue of lysocin E. The present methods for the preparation and application of these five Trp isomers provide a new strategy for analyzing and modifying the specific functions of numerous Trp-containing peptides and proteins beyond this study.


Assuntos
Técnicas de Síntese em Fase Sólida , Triptofano , Triptofano/química , Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Indóis
7.
Eur J Surg Oncol ; 49(8): 1466-1473, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188553

RESUMO

INTRODUCTION: Currently, the impact of body mass index (BMI) on the outcomes of laparoscopic liver resections (LLR) is poorly defined. This study attempts to evaluate the impact of BMI on the peri-operative outcomes following laparoscopic left lateral sectionectomy (L-LLS). METHODS: A retrospective analysis of 2183 patients who underwent pure L-LLS at 59 international centers between 2004 and 2021 was performed. Associations between BMI and selected peri-operative outcomes were analyzed using restricted cubic splines. RESULTS: A BMI of >27kg/m2 was associated with increased in blood loss (Mean difference (MD) 21 mls, 95% CI 5-36), open conversions (Relative risk (RR) 1.13, 95% CI 1.03-1.25), operative time (MD 11 min, 95% CI 6-16), use of Pringles maneuver (RR 1.15, 95% CI 1.06-1.26) and reductions in length of stay (MD -0.2 days, 95% CI -0.3 to -0.1). The magnitude of these differences increased with each unit increase in BMI. However, there was a "U" shaped association between BMI and morbidity with the highest complication rates observed in underweight and obese patients. CONCLUSION: Increasing BMI resulted in increasing difficulty of L-LLS. Consideration should be given to its incorporation in future difficulty scoring systems in laparoscopic liver resections.


Assuntos
Laparoscopia , Neoplasias Hepáticas , Humanos , Índice de Massa Corporal , Estudos Retrospectivos , Tempo de Internação , Hepatectomia/métodos , Laparoscopia/métodos , Duração da Cirurgia , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/complicações , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia
8.
Cell J ; 25(2): 118-125, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840458

RESUMO

OBJECTIVE: Chemotherapeutic drug resistance is the main obstacle that affects the efficacy of current therapies of hepatocellular carcinoma (HCC), which needs to be addressed urgently. High expression of histone methyltransferase G9a was reported to play a pivotal role in the progression of HCC. Regulatory mechanism of aberrant activation of G9a in HCC and the association with subsequent cisplatin (DDP) resistance still remains ambiguous. This study strived to investigate mechanism of G9a overexpression and its impact on cisplatin resistance in HCC cells. MATERIALS AND METHODS: In this experimental study, we investigated effects of different concentrations of cisplatin in combination with BIX-01294 or PR-619 on viability and apoptosis of HuH7 and SNU387 cells via CCK-8 kit and flow cytometric analysis, respectively. Colony formation capacity was applied to evaluate effect of cisplatin with or without BIX-01294 on cell proliferation, and western blotting was used to verify expression level of the related proteins. Global mRNA expression profile analysis was adopted to identify differentially expressed genes associated with overexpression of G9a. RESULTS: We observed that overexpression of G9a admittedly promoted cisplatin resistance in HCC cells. Global mRNA expression profile analysis after G9a inhibition showed that DNA repair and cell cycle progression were downregulated. Moreover, we identified that deubiquitination enzymes (DUBs) stabilized high expression of G9a in HCC through deubiquitination. Additionally, cisplatin could significantly inhibit proliferation of DUBs-deficient HCC cells, while promoting their apoptosis. CONCLUSION: Collectively, our data indicated that DUBs stabilize G9a through deubiquitination, thereby participating in the cisplatin resistance of HCC cells. The elucidation of this mechanism contributes to propose a potential alternative intervention strategy for the treatment of HCC patients harboring high G9a levels.

9.
J Org Chem ; 87(21): 13698-13707, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36164765

RESUMO

An iron-based catalytic system was developed for the cross-coupling of 1-bromoalkynes with terminal alkynes to selectively generate unsymmetrical 1,3-butadiynes in water under air. It was found that a combination of 1-bromoalkynes derived from less acidic terminal alkynes with more acidic counterparts would greatly enhance yields and selectivity for unsymmetrical 1,3-butadiynes. The reaction was also applicable for the synthesis of unsymmetrical 1,3,5-hexatriynes through coupling of 1-bromoalkynes and trimethylsilyl-protected 1,3-butadiynes in a one-pot manner.

10.
Polymers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015523

RESUMO

Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.

11.
Nat Commun ; 12(1): 5897, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625552

RESUMO

Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.


Assuntos
Adenina , Edição de Genes , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , gama-Globinas/genética
12.
Front Cell Dev Biol ; 9: 726632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604226

RESUMO

Deubiquitination is the reverse process of ubiquitination, which is catalyzed by deubiquitinase enzymes. More than 100 deubiquitinases have been identified. Ubiquitin-specific peptidase 47 (USP47), a member of the ubiquitin-specific protease family with high homology to USP7, is an active molecule with a wide range of functions and is closely associated with cancer and other diseases. However, no systematic summary exists regarding the functions of USP47. Here, we summarize the functions and expression regulation of USP47. USP47 is highly expressed in many tumors and is widely involved in tumor development, metastasis, drug resistance, epithelial-mesenchymal transition, and other processes. Targeted inhibition of USP47 can reverse malignant tumor behavior. USP47 also plays a role in inflammatory responses, myocardial infarction, and neuronal development. USP47 is involved in multiple levels of expression-regulating mechanisms, including transcriptional, post-transcriptional, and post-translational modifications. Development of targeted inhibitors against USP47 will provide a basis for studying the mechanisms of USP47 and developing therapeutic strategies for cancers and other diseases.

13.
Front Oncol ; 11: 778258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127481

RESUMO

Bile acids (BAs) were originally known as detergents to facilitate the digestion and absorption of lipids. And our current knowledge of BAs has been extended to potential carcinogenic or cancer suppressor factors due to constant research. In fact, BAs were regarded as a tumor promoters as early as the 1940s. Differential bile acid signals emitted by various bile acid profiles can produce distinct pathophysiological traits, thereby participating in the occurrence and development of tumors. Nevertheless, in recent years, more and more studies have noticed the value of BAs as therapeutic targets. And several studies have applied BAs as a therapeutic agent for various diseases including cancer. Based on the above evidence, we acknowledge that the role of BAs in cancer has yet to be exploited, although considerable efforts have been made to probe the functions of BAs. In this review, we describe the characteristics of BAs as a double-edged sword in cancer, hoping to provide references for future cancer treatments.

14.
Org Biomol Chem ; 18(39): 7848-7851, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33001115

RESUMO

An efficient asymmetric vinylogous aldol/lactonization cascade reaction between ß,γ-unsaturated amides and trifluoromethyl ketones has been developed. Using a chiral cyclohexanediamine-based tertiary amine-thiourea catalyst, optically active trifluoromethyl dihydropyranones have been constructed in moderate-to-excellent yields (up to 99%) with excellent stereoselectivities (96-> 99.5% ee).

15.
J Am Chem Soc ; 142(39): 16661-16667, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32881485

RESUMO

A two-ligand system composed of the predesigned multivalent and complementary terpyridine-based ligands was exploited to construct heteroleptic metallo-supramolecules and to investigate the self-assembly mechanism. Molecular stellation of the trimeric hexagon [Cd6L23] gave rise to the exclusive self-assembly of the star hexagon [Cd18L16L33] through complementary ligand pairing between the ditopic and octatopic tectons. To understand how the intermolecular heteroleptic complexation influenced the self-assembly pathway, the star hexagon was truncated into two triangular fragments: [Cd12L13L43] and [Cd12L13L53]. In the self-assembly of [Cd12L13L43], the conformational movements of hexatopic ligand L4 could be regulated by L1 to promote the subsequent coordination event, which was the key step to the successful multicomponent self-assembly. In contrast, the formation of [Cd12L13L53] was hampered by the geometrically mismatched intermediates.

16.
Mol Ther Nucleic Acids ; 20: 580-588, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32335475

RESUMO

Base editing is a form of genome editing that can directly convert a single base (C or A) to another base (T or G), which is of great potential in biomedical applications. The broad application of base editing is limited by its low activity and specificity, which still needs to be resolved. To address this, a simple and quick method for the determination of its activity/specificity is highly desired. Here, we developed a novel system, which could be harnessed for quick detection of editing activity and specificity of base editors (BEs) in human cells. Specifically, multiple cloning sites (MCS) were inserted into the human genome via lentivirus, and base editing targeting the MCS was performed with BEs. The base editing activities were assessed by specific restriction enzymes. The whole process only includes nucleotide-based targeting the MCS, editing, PCR, and digestion, thus, we named it NOTEPAD. This straightforward approach could be easily accessed by molecular biology laboratories. With this method, we could easily determine the BEs editing efficiency and pattern. The results revealed that BEs triggered more off-target effects in the genome than on plasmids including genomic indels (insertions and deletions). We found that ABEs (adenine base editors) had better fidelity than CBEs (cytosine base editors). Our system could be harnessed as a base editing assessment platform, which would pave the way for the development of next-generation BEs.

17.
Cell Regen ; 8(2): 44-50, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709036

RESUMO

Clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR-Cas) of bacterial adaptive immunity have been adopted as a powerful and versatile tool for manipulation of the genome. This paradigm has been widely applied in biological research and treatments of animal or cellular disease models. A critical feature of CRISPR-Cas is the protospacer adjacent motif (PAM), which dictates the DNA target recognition mechanism of Cas proteins. While, direct identifying functional PAM sequences in human cells remains a challenge. Here, we developed a positive screen system termed PAM-DOSE (PAM Definition by Observable Sequence Excision) to delineate the functional PAMs in human cells. Specifically, the PAM libraries for CRISPR-Cas (SpCas9, SpCas9-NG, FnCas12a, AsCas12a, LbCas12a and MbCas12a) were generated and the corresponding CRISPR-Cas mediated cleaved fragments with functional PAM in human cells were harvested for DNA sequencing, which could be tracked and visualized with either florescence microscopy or flow cytometry analysis. With this system, we identified the functional PAMs of CRISPR-Cas members. We also found that spacer sequence affects the PAM preference of Cas proteins. This method will facilitate identification of functional PAMs for Cas-mediated human genome editing applications.

18.
J Am Chem Soc ; 141(41): 16217-16221, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31509710

RESUMO

A series of stellated metallosupramolecular architectures have been assembled through three-component integrative self-sorting. Building on the complementary ligand pairing, the initial attempts to synthesize the hexagram complex from a combination of X-shaped tetrakis- and V-shaped bis-terpyridine ligands, and CdII ions, resulted in an unprecedented mixture of stellated octanuclear and dodecanuclear metallocages, which were further isolated by column chromatography. To overcome the unexpected obstacle, the multivalent ligand design along with spontaneous heteroleptic complexation was applied to realization of the one-pot synthesis of the intricate topology. A centrally situated triangle served as a prop for quantitative formation of the six-pointed stellated complex. Notably, in the absence of the triangular prop, a four-pointed star was produced.

19.
Chem Commun (Camb) ; 55(44): 6289-6292, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086909

RESUMO

Three heterobimetallic metallomacrocycles were readily assembled through either a stepwise or a one-pot protocol by selective complexation of ZnII ions and PdII or PtII acceptors with the predesigned ligands possessing one 60°-bent bisterpyridine and two mono- or bis-pyridines. In the multicomponent self-assembly, the preorganized ZnII-terpyridine metallo-triangle led to the formation of the exterior macrocycles.

20.
Sheng Wu Gong Cheng Xue Bao ; 35(3): 341-350, 2019 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-30912343

RESUMO

Clustered regular interspaced short palindromic repeats (CRISPR) system has been widely used in recent years. Compared with traditional genome editing technology, CRISPR/Cas system has notable advantages, including high editing efficiency, high specificity, low cost and the convenience for manipulation. Type Ⅱ and Ⅴ CRISPR/Cas system only requires a single Cas9 protein or a single Cpf1 protein as effector nucleases for cutting double-stranded DNA, developed as genome editing tools. At present, CRISPR/Cas9 technology has been successfully applied to the genome editing of eukaryotes such as zebrafish, mice and human cells, whereas limited progress has been made in the genome editing of bacteria. In our review, we describe CRISPR/Cas system, its mechanism and summarize the optimization and progress of genome editing in bacteria.


Assuntos
Sistemas CRISPR-Cas , Animais , Bactérias , Endonucleases , Edição de Genes , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...